Monday, June 18, 2012

Induced Seismicity Potential in Energy Technologies

The National Research Council Report
Executive Summary Excerpt
Earthquakes attributable to human activities are called “induced seismic events” or “induced earthquakes.” In the past several years induced seismic events related to energy development projects have drawn heightened public attention. Although only a very small fraction of injection and extraction activities at hundreds of thousands of energy development sites in the United States have induced seismicity at levels that are noticeable to the public, seismic events caused by or likely related to energy development have been measured and felt in Alabama, Arkansas, California, Colorado, Illinois, Louisiana, Mississippi, Nebraska, Nevada, New Mexico, Ohio, Oklahoma, and Texas.

Anticipating public concern about the potential for energy development projects to induce seismicity, the U.S. Congress directed the U.S. Department of Energy to request that the National Research Council examine the scale, scope, and consequences of seismicity induced during fluid injection and withdrawal activities related to geothermal energy development, oil and gas development including shale gas recovery, and carbon capture and storage (CCS).
The study was also to identify gaps in knowledge and research needed to advance the understanding of induced seismicity; identify gaps in induced seismic hazard assessment methodologies and the research to close those gaps; and assess options for steps toward best practices with regard to energy development and induced seismicity potential. Three major findings emerged from the study:
(1) the process of hydraulic fracturing a well as presently implemented for shale gas recovery does not pose a high risk for inducing felt seismic events;
(2) injection for disposal of waste water derived from energy technologies into the subsurface does pose some risk for induced seismicity, but very few events have been documented over the past several decades relative to the large number of disposal wells in operation; and
(3) CCS, due to the large net volumes of injected fluids, may have potential for inducing larger seismic events. Induced seismicity associated with fluid injection or withdrawal is caused in most cases by change in pore fluid pressure and/or change in stress in the subsurface in the presence of faults with specific properties and orientations and a critical state of stress in the rocks.



The factor that appears to have the most direct consequence in regard to induced seismicity is the net fluid balance (total balance of fluid introduced into or removed from the subsurface), although additional factors may influence the way fluids affect the subsurface. While the general mechanisms that create induced seismic events are well understood, we are currently unable to accurately predict the magnitude or occurrence of such events due to the lack of comprehensive data on complex natural rock systems and the lack of validated predictive models.
Energy technology projects that are designed to maintain a balance between the amount of fluid being injected and withdrawn, such as most oil and gas development projects, appear to produce fewer seismic events than projects that do not maintain fluid balance. Hydraulic fracturing in a well for shale gas development, which involves injection of fluids to fracture the shale and release the gas up the well, has been confirmed as the cause for small felt seismic events at one location in the world.

Wastewater Injection Well
Waste water disposal from oil and gas production, including shale gas recovery, typically involves injection at relatively low pressures into large porous aquifers that are specifically targeted to accommodate large volumes of fluid. The majority of waste water disposal wells do not pose a hazard for induced seismicity though there have been induced seismic events with a very limited number of wells. The long-term effects of a significant increase in the number of waste water disposal wells for induced seismicity are unknown.
Projects that inject or extract large net volumes of fluids over long periods of time such as CCS may have potential for larger induced seismic events, though insufficient information exists to understand this potential because no large-scale CCS projects are yet in operation. Continued research is needed on the potential for induced seismicity in large-scale CCS projects.
Induced seismicity in geothermal projects appears to be related to both net fluid balance considerations and temperature changes produced in the subsurface. Different forms of geothermal resource development appear to have differing potential for producing felt seismic events. High-pressure hydraulic fracturing undertaken in some geothermal projects has caused seismic events that are large enough to be felt. Temperature changes associated with geothermal development of hydrothermal resources has also induced felt seismicity.
Governmental response to induced seismic events has been undertaken by a number of federal and state agencies in a variety of ways. However, with the potential for increased numbers of induced seismic events due to expanding energy development, government agencies and research institutions may not have sufficient resources to address unexpected events. (The National Academies Press)

No comments: